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Oscillatory viscous flow in a tapered channel is analysed under conditions of fixed 
stroke volume. A lubrication theory is developed for small taper and the general result 
is steady bidirectional drift and an induced steady pressure gradient. The 
characteristics of the drift profiles change significantly as the Womersley parameter 
is increased. For larga values difficulties arise in the matched asymptotics method 
which are resolved by introducing a steady drift layer that  is much thicker than the 
Stokes layer. This double boundary layer does not arise in pressure-cycled oscillations. 
Both Eulerian and Lagrangian drift are examined. The results are compared 
qualitatively to experimental observations which primarily focus on the application 
to ventilation in the lung. 

1. Introduction 
A common device used to assist respiration during surgical procedures or in 

intensive-care settings is the mechanical ventilator. Typically, ventilators deliver 
tidal breaths on the order of 600-800 em3 at a rate of 8-12 breaths per minute for 
an adult. This pattern mimics normal respiration. The tidal volumes are 4-6 times 
larger than the lung dead space, which is the volume of conducting airways where 
no gas exchange occurs. Therefore transfer of oxygen and carbon dioxide is dominated 
by penetration of the gas bolus into the alveolar space. A relatively new method of 
mechanical ventilation, however, utilizes tidal breaths that are much smaller than 
the dead space, but driven at high frequencies, 5-30 Hz. This pattern mimics panting. 
Experiments on dogs by Slutsky et al. (1980), Bohn et al. (1980), McEvoy et al. (1982) 
and on humans by Butler et al. (1980) demonstrate favourable gas exchange with this 
method. Clearly, the simple bulk penetration of tidal breaths is not responsible for 
this result. A major feature of high-frequency ventilation (HFV) is the oscillatory 
gas flow in the airways and particularly at their bifurcations. Haselton & L '3 c h erer 
(1982) have examined piston-driven oscillatory flow of a liquid in a branching Y-tube. 
Their studies show that periodic cycling of a constant stroke volume induces steady 
axial drift of marked fluid which is bidirectional. Several values of the Womersley 
parameter a and the Rrynolds number are investigated. Further details of this study 
were presented in Scherer & Haselton (1982), where its possible importance as a mode 
of gas exchange and aerosol deposition is discussed. They suggest that a probable 
explanation of the drift is the difference in axial velocity of profiles between 
inspiratory and expiratory flow a t  the bifurcation. Pressure measurements have been 
made in intact animals during HFV by Simon, Weinmann & Mitzner (1982), who 
measured time-averaged alveolar and airway (trachea) pressures in dogs. They found 
that, for high-enough frequcncies, mean alveolar pressure exceeds mean airway 
pressure, and the magnitude of this difference increases with frequency. Other 
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investigators (Gavriely 1983 personal communication) have observed similar steady 
pressure gradients indirectly, They note that, while the mean airway pressure is held 
constant during HFV in dogs, the lungs inflate to a larger mean volume. The 
appearance of a steady pressure gradient from purely oscillatory forcing strongly 
suggests nonlinear flow phenomena which airway bifurcations can provide. A steady 
pressure gradient indicates the presence of a steady flow, such as the bi-directional 
streaming discussed above. Hence there is some evidence linking tube experiments 
to animal experiments concerning the importance of steady streaming in HFV. 

A detailed theoretical analysis of velocity profiles for oscillating flow in the vicinity 
of an airway bifurcation is a formidable task. Complications of secondary swirl flows, 
vortex formation, separation, turbulence and entrance effects are too difficult to 
handle with the three-dimensional geometry. However, a notable feature of airway 
geometry is that  the cross-sectional area of a parent airway gradually increases by 
roughly 20 yo to  match the total cross-sectional area of the daughters. This transition 
starts a t  roughly one-third of the airway length and is completed just prior to the 
carina as noted in measurements of dog airways by Schreck (1972). The mean slope 
E of a single airway wall may be estimated by the ratio of its total change in mean 
radius to its total length. From Schreck (1972) and from human data by Horsefield 
& Cumming (1967), the upper bound of this parameter is approximately e < 0.1. The 
straight Y-tubes used in the above experiments also possess a region of increasing 
cross-sectional area, starting a t  the take-off of the daughter tubes and ending a t  the 
carina. The corresponding mean slope appears to be e z 0.7. 

As a first approximation to oscillatory flow a t  a bifurcation, a model is presented 
in $2 of a two-dimensional channel segment with slowly increasing depth. Earlier 
versions of this model appeared in Grotberg (1983a, b ) .  The fluid contained inside 
the channel oscillates a t  a prescribed stroke volume and frequency and the general 
result is an induced steady, bidirectional drift and steady pressure gradient. This 
differs significantly from the work of Hall (1974), who considers oscillatory flow in 
a tube of slowly varying cross-section. Hall prescribes an oscillating pressure 
difference of constant amplitude. Under these conditions when frequency is increased 
the amplitude of motion, that  is, fluid speeds and stroke volume, monotonically 
decrease. In our problem, however, stroke volume is fixed, so unsteady fluid speeds 
increase with frequency. The stroke amplitude A ,  which is a ratio of the local 
oscillatory displacement amplitude to the local tube radius, now becomes an 
important parameter which is not fixed in Hall’s work. The product eA = h is a 
modified amplitude parameter which determines the behaviour of the steady bi- 
directional drift. It plays a role similar to the torsional oscillation amplitude in Jones 
& Rosenblat (1969) and the linear oscillation amplitude in Stuart (1966). The analogy 
includes restrictions on the asymptotic series developed in $ 9 3  and 4, such that 
eAa2 4 1 in the low-to-middle-frequency range (a < O( 1 ) ) .  It also includes similarities 
in the high-frequency limit (a 9 1 ) .  I n  this limit the method of matched asymptotic 
expansions adequately describes the periodic motion to  leading order by appropriately 
scaling the boundary-layer coordinate on the Stokes-layer thickness 8,. It fails, 
however, to  handle the steady drift that  arises at higher order. Rapid changes in the 
steady-drift velocity profile occur over a larger distance from the wall than the Stokes 
layer. A second boundary-layer coordinate based on the drift-layer thickness 
8, = & / A  must be introduced into the analysis and eventually leads to the desired 
solution. This thicker drift layer does not appear in Hall’s analysis because of the 
inverse relationship between a and velocity. The large-a solution corresponds to large 
values of the steady streaming Reynolds number €2, = a2A. A simplified version of 



Volume-cycled oscillatory $ow in a tapered channel 25 1 

the method of Fettis (1956) as outlined in Stuart is used to  solve this double boundary- 
layer problem in $5. The steady Lagrangian drift is computed in $6 and contrasted 
to the corresponding Eulerian drift for low and high frequencies. Some comparisons 
are made between the theoretical predictions and the experimental results of 
Haselton and Scherer. The induced steady pressure gradient is treated in $7 and 
comparedwith theexperimental observations. Some concluding remarks and criticisms 
are offered in $8.  

2. Problem formulation 
We shall examine the two-dimensional flow of an incompressible fluid with density 

p and kinematic viscosity v. The fluid is confined by a section of rigid channel walls 
whose position y* = +_ W*(x*) is symmetric with respect to the axial coordinate x*, 
where 0 < x* < L. The channel half-depth a t  the origin is W*(0) = b,  and we define 
the dimensionless parameter 

(2 .1 )  

as a measure of the slope of W*. Oscillatory fluid motion is imposed by specifying 
the periodic volume flow rate in the channel, that is, the local channel stroke volume, 
V and frequency w = 2nf. V is defined by 

€ = ( W*(L)  - W*(O))/L 

V = 2b sT2 sw* u* dy* dt*, 
Ti 0 

where the time interval to T, coincides with a full unidirectional stroke and 
T,  = T,+n /w .  For convenience we define a displacement length d = V / 2 b 2 .  The 
parameter d reflects the amplitude of the fluid oscillations. An appropriate indicator 
of the corresponding fluid velocity amplitudes is then defined as U = ad. 

The fluid motion is governed by the Navier-Stokes equations given in the following 
dimensionless form : 

( 2 . 3 )  

(2.4) 

ux+vuy = 0. ( 2 . 5 )  

a2ut + a2h(uux + vu,) = - a2hpx + €2UXZ + U,,’ 

e2(a2vt + a2h(uvx + vv,)) = - a2Apy + E ~ ( I z ~ ~ ~ ~  + vyv), 

and by mass conservation for incompressible fluids 

The dimensionless variables are defined by 

and the dimensionless parameters are 

where an asterisk indicates dimensional quantities. a is the Womersley parameter and 
A is the amplitude parameter. The boundary conditions of no slip a t  the stationary 
walls simplify for the symmetric channel and are 

u = v = O  on y =  W ( z ) ,  (2 .8a,  b )  

u , = v = 0  on y = 0  (2 .8c ,  d )  

9 F L M  141 



252 J .  B.  Grotberg 

3. Method of solution 
We are interested in a channel with small slope e G 1 ,  and utilize this assumption 

in a lubrication theory to solve the governing equa,tions (2 .3)-(2.5)  and the boundary 
conditions ( 2 . 8 ) .  The choices of the x- and v-scalings in ( 2 . 7 )  were made in anticipation 
of this method. It is convenient to eliminate pressure as a variable and combine (2 .3 )  
and (2.4) in a stream-function equation. Neglecting terms O ( 2 )  we arrive at  the 
following : 

a23y/2 / t  - 37j~iyy + m 3 y  3 x y y  - 3, 3,,,) = 0, (3.1) 

where h = eA << 1 ,  and A is a fixod order-unity quantity. The x- and y-components 
of velocity are respect(ive1y 

The boundary conditions become the equivalent statements in terms of the stream 
function : 3, = @.,=0 on y =  W ( x ) ,  (3.3a, b)  

9=+. , ,=0  on y = O .  ( 3 . 3 c ,  d )  

Since (3.3a, b)  ensure that 03 = 0 on the wall, then 3(y = W )  depends on t only and 
represents the oscillating volume flow rate between the midplane 3 = 0 and the wall. 
It is computationally easier to replace ( 3 . 3 b )  with the equivalent constraint 

u = 3y, 21 = -3,. (3 .2)  

+ = $eit+c.e. on y = W, (3.3e) 

which corresponds dimensionally to ( 2 . 2 )  when integrated over one half-cycle. The 
abbreviation c.c. denotes complex conjugate. We solve (3.1) by expanding the stream 
function for h 4 1 : 

3 = ~o+h+,+O(h2) .  (3.4) 

By inserting (3.4) into (3.1) and collecting terms of like power in A,  the leading-order 
problem reduces to the linear equation 

(3 .5 )  

and the boundary conditions are the same as (3.3) with + replaced by yk0. The solution 
to this system is readily found by separation of variables: 

$, = (ao(x)sinhcry+bo(x)y)eit+c.c., (3.6) 

a 2 3 0 y y t  - 3 o y y y y  = 0, 

where the x-dependent functions are governed by the prescribed wall shape 

ao(x) = :(sinhuW-aWcoshcrW)-l, bo(x) = -ua,coshcrW. ( 3 . 7 )  

The complex parameter u is defined as u = a( l  + i)/2/2. At this order, only periodic 
motion occurs. The next-order problem will contain products of the derivatives of 
e0, which lead, in general, to periodic terms proportional to eiZt and also to steady 
terms. We will focus our attention on the latter. At O ( h )  (3.1) has the form 

(3.8) 

subject to the O ( h )  boundary conditions, which are the homogeneous version of (3.3). 
Of particular concern is the steady-state component of (3.8). After substituting (3.6) 
into (3.8), we find the O(h)  steady correction to be 

a21Cr1yyt - 3 l Y Y Y Y  = @330z 3 o y y y  - 3 0 ,  1/cozyy)’ 

1CrS(.,Y) = a,(x,y)+b,(x)y+cl(x)y3+c.c., (3.9) 
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n=O 0.90 
1 0.61 
3 0.28 
5 0.17 

10 0.065 
15 0.033 
20 0.023 
23 0.021 

18.4 
12.4 
5.73 
3.47 
1.33 
0.675 
0.471 
0.430 

2.54 
2.33 
2.00 
3.11 

13.4 
113 

1600 
1 1  800 

19.6 
21.4 
25.0 
16.1 
3.73 
0.44 
0.031 
0.004 

1.09 
1.75 
4.46 
4.73 
2.87 
0.667 
0.067 
0.010 

TABLE 1 .  Estimates of the parameters a and h for several airway generations. A tidal volume of 
50 cm3 at a rate of 10 Hz is assumed. The stroke amplitude d is calculated from the tidal volume 
and total cross-sectional area at the generation, i.e. d, = 50/S, and An = b,/d,. The airway radius 
is substituted forb,. E = 0.05. (From Weibel (1963).) 

with the definitions 

a,(x,y) = -igaoCih (sinh2/2ay-isin 2/2ay)-2i(4a,&+a~60) sinhcry 

+ 2icra0 & y cosh cry, (3.10a) 

(3. l o b )  

( 3 . 1 0 ~ )  

In (3.10) a prime indicates differentiation with respect to x and an overbar denotes 
complex conjugate. Further calculations of $ to higher order show that A@, - a2h 
and - a4h2. The asymptotic series is only valid if the product a2h -+ 1. As the 
Womersley parameter a is varied we expect good approximation as long as h is small 
enough. I n  the bronchial network, the corresponding values of these parameters are 
listed in table 1 for representative frequencies and tidal volumes. The airway radius 
is replaced by b and the stroke distance d is calculated from plug flow and the total 
cross-sectional area a t  the given airway generation. 

4. The Eulerian steady drift, a < 0(1) 

The results of 53 predict steady drift even though the net volume flux is zero. Hence, 
in the case where the wall gradually flares as x increases, similar to an airway, we 
must have bi-directional drift of fluid whose amplitude is linearly proportional to h 
at this order. The Eulerian steady axial drift velocity is plotted in figure l(a) for 
several values of a with h = 0.002. Note that the integral of this velocity over the 
half-width must be zero by continuity. The steady drift is positive, toward the larger 
end, for fluid near the centreline, and negative, toward the smaller end, for fluid near 
the wall. The drift amplitude increases with a, while the single crossover value of y 
remains essentially constant. In  figure 1 (b) larger values of a give quite a different 
picture. The midline velocity decreases as a increases such that the a = 10 curve has 
negative drift, which becomes even more negative as a is increased to 20. Along with 
this reversal is the appearance of a second crossover point resulting in negative drift 
near the wall and near the midline, but positive drift in an intermediate region. The 

9-2 
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FIGURE 1. uulul.Lu.l u.lly ,v-yv.vJ yL v..-v -- 
a < 0(1) and a2h < 1 ; h = 0.002. 
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rather small choice of' h for figures 1 (a ,  b )  satisfies the requirement that h 4 1/a2 for 
the most restrictive case illustrated, a = 20. A separate analysis for high-frequency 
oscillations, a % 1,  is outlined in $5, where this restriction on h is removed and 
replaced by the less severe constraint h 6 1. We shall see that the qualitative features 
of the three drift regions presented here overlap with the following analysis for 
large a. 

The channel shape used is 

W* = b (0 < x* < ill), (4 . la )  

(4.1 b )  

where the aspect ratio is L/b = 6, E = 0.1 and 8 = 0.267 according to (2.1). For this 
example and those that follow, x* = 2L/3. 

E 
b 

w* = b+ -(x*-iL)2 ($L < x* < L ) ,  

5. The Eulerian steady drift, a % 1:  the double boundary layer 
I n  this section we employ the method of matched asymptotic expansions to 

investigate (3.1) in the limit of a +a. This flow has some similarities to oscillatory 
flow in a straight tube or channel, such as development of an inviscid core region, 
which oscillates like a fluid plug, and a Stokes layer near the rigid boundary, However, 
it differs by the appearance of a drift boundary layer near the wall which is much 
thicker than the Stokes layer. 

We proceed by first examining the inviscid core or outer region with dependent 
variables Y,  U ,  V and P. Dividing (3.1) by a2 and taking the outer limit a+ 00 leaves 
us with the inviscid equation 

An expansion of Y in powers of h can be solved as before, where Y satisfies only 
the midline boundary conditions (3.3 c, d). Omitting details of the calculation, the 
expansion is found to be 

Y = Ko(x) y eit + h(K,(x)  y eiZt + K2(x) y)  + c.c. + O(h2).  (5 .2 )  

Ko(x)  will be determined in the matching procedure, while the steady x-direction 
velocity Us = hK,(x) in the outer region will be determined by the integral mass- 
balance equation. It will be necessary to calculate the large-a pressure gradient from 
(3.1) and (2.3). By expanding the pressure gradient as 

1 
P, = (&, + AP,, + O(h2)) + 0 (k) (5.3) 

we find from the y-component of momentum that Py = 0 to this order. Prom the 
x-component of momentum the pressure gradient is determined to be 

P,, = - iKo eit + c.c., Pl", = -KO zi + C.C. (5 .4a,  b )  

The unsteady component of PI is of no concern so is omitted here. The steady 
component P:,, as well as the unsteady components, are transmitted to the Stokes 
layer without modification since P, = 0 throughout. A more detailed discussion of 
the pressure gradient is given in 8 7. 
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(5.5) 
formation 

which is inserted into (3.1) using the appropriate chain rule for partial derivatives. 
The inner dependent variables are $4, u, v and P. The limiting form for large a becomes 

The boundary layer or inner region is examined by using the variable trans- 

5 = x, 7 = a(W(x)-y),  

$4([, 7,  t )  = a$(., y, t )  must satisfy the boundary conditions at the wall 

$4 7 '  = O  $4 =$xeit+c.c. on 7 = O .  (5.7) 

If we expand $4 in powers of A, that  is 

$4 = $hO+h$h,+O(h2)+O - , (3 
and insert (5 .8)  into (5.6), we find the leading-order term 

The matching condition a t  this order, for both x- and y-components of velocity, shows 
KO = 1/4 W. A composite solution of the velocity field, valid for the entire flow regime 
to leading order, is obtained from (5.2) and (5.9) : 

where y = (1 + i)/2/2. Proceeding to next order, the steady component of $4, from (5.8) 
is found to be 

- w  
$4: = 16 2/2 w3 {i(i -i)  e-d27+ (5+ i(3 + 2/2 7)) e-77 

+ (1  - i) e - T  + B',([) + G, (0 7 + H ,  (5) r2 + c.c. (5.11) 

It is here that the asymptotic method breaks down for fixed-amplitude oscillations. 
q(5) and G , ( t )  are derived by satisfying (5.7), but H ,  is not determinable. I n  the limit 
as 7-f 00 we must be able to match the steady Stokes-layer velocities to the outer 
region. The least-singular case would be to choose H ,  = 0, as done by Stuart (1966) 
and by Jones & Rosenblat (1968). Then the dominant term in (5.11) leads to the 
following steady velocities which must be matched to the drift K, (x )  in the inviscid 

( 5 . 1 2 ~ )  
core : 

3 w  
lim us = -lim$4y7 = -G,([)+c.c. = ~ 16 + c.c.3 

7 + a  

(5.12b) 

The matching cannot be done directly, essentially because the dimensionless Stokes- 
layer thickness 8, = ( v /b2w) i  is an inappropriate lengthscale for the steady-drift 
phenomena. Instead, we shall see that the drift-velocity profile undergoes rapid 
changes in the y-direction within a larger distance 8, = 8,/h from the wall, where 
h < 1 by assumption. It must do this in order to satisfy both the no-slip condition 
and the zero-mean-flux condition. Hall's (1974) analysis does not have this latter 
constraint, so his Stokes layer matches directly to the core drift. No double boundary 
layer develops in that pressure-cycled oscillatory flow. 
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We approach this problem in the manner of Stuart by expressing # as 

$ = ~ - 7 ~ o ( E J ) + @ ( E > 7 , ~ ) ,  (5.13) 

and inserting (5.13) into (5.6) and (5.7). The first two terms of (5.13) will balance the 
pressure gradient in (5.6). The remaining relationship for @ is simplified by separating 
@ into steady and periodic components: 

@ = @S+@". (5.14) 

It is possible, then, to time average the boundary-layer equation, neglect interacting 
terms of (PS and @P, and arrive a t  a decoupled equation for dSs only: 

+ A(@$) @; - @! @&) = 0. (5.15) 

Rescaling the y-variable in the drift-layer thickness 6, leads to the equation we are 
seeking, which is devoid of parameters: 

x555 - xg xg + Xf x55 = 0, (5.16) 

where we define the new boundary-layer coordinate and stream function as 

5 = h7> X ( E ,  5) = - @ Y E ,  7)  (5.17) 

respectively. The function x must satisfy three boundary conditions 

x = 0  on 5 = 0 ,  (5.18a) 

3 w  
limXs = lim us = - 16w3+c.c.' 
5-0 7-00 

lim xc = K , ( x ) + c . c . ,  
5- 

(5.18b) 

(5 .18~)  

which are, in order, the zero-steady-mass-flow condition, the matching of the 
Stokes-layer solution to the drift layer, and the matching of the drift layer to the 
inviscid core flow. A simple, representative solution to (5.16) and (5.18) is available 
by the method of Fettis (1956). If we pick a wall shape that is approximately 
parabolic, as in $4, then the W-dependent function in (5.12a, b) can be written as 

G,(C) + C.C. E - b2c, (5.19a) 

while a similar form is expected for K ,  : 

K 2 ( t )  + C.C. z -c". (5.19b) 

An approximate solution to  this system is 

(5.20) 

in which a2 = b2 + c2. In  the external-flow problem treated by Stuart, the steady drift 
matches to zero velocity as c+ co. That case is equivalent to setting c = 0, which 
would render (5.20) an  exact solution to (5.16). Here we consider (5.20) as a first 
approximation for small c. The composite solution to the steady-drift problem can 
now be written as 

(5.21) 
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FIGURE 2. Eulerian axial drift-velocity profile for several values of a % 1 ; h = 0.3. 

The remaining unknown function in (5.19b) is solved by the integral mass-balance 
equation for the steady Eulerian velocity : 

(5 .22)  

A graph of Gs appears in figure 2 plotted as a function of 7 ,  and for h = 0.3. Note 
that the wall position is a t  7 = 0. Qualitatively we see that in the Stokes layer there 
is negative drift nearest the wall which rapidly reverses as 7 increases to become 
positive drift near its outer edge. This is expected from (5.12a) when W' > 0. The 
curves then reverse again for larger 7 and approach asymptotically the inviscid core 
steady drift Q, which has a small negative value. This is consistent with the 
assumption of small c .  The two boundary-layer thicknesses are denoted and it is clear 
that this approximation improves as 01 increases. The three regions of drift and two 
crossover points are qualitatively similar to the analysis in $4. The steady positive 
jet toward the wi&r end of the channel separates a smaller negative Stokes-layer jet 
from a negative core drift which is smaller still. 

6. The Lagrangian steady drift 
The actual steady motion of fluid particles in the Lagrangian reference frame may 

be calculated from the Eulerian velocity fields derived in $84 and 5. The Eulerian 
velocities are a basic component of the convection-diffusion equation which ultimately 
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will govern transport of gas species in the HFV application. The computed Lagrangian 
velocities may be correlated to experiments which follow fluid-particle motion, such 
as those by Haselton and Scherer. The Lagrangian velocity vector is the time 
derivative of the fluid mapping X(X,, t ) ,  where X, is a reference position. We expand 
the mapping by the relation 

x =  X,+AX,(X0,t)+A2X~(X0,t)+O(A3), (6.1) 

which is true for A 6 1 on the basis of small A ,  that is, X = X, when A = 0. The 
corresponding expansion for Lagrangian velocity, simply the time derivative of (6. l),  
is related to the previous Eulerian velocity expansions, denoted in general by 
u(x, t )  = u, + Au, + O(A2) ,  in the following way : 

(6.2a, b )  

where x = X,. Equation ( 6 . 2 ~ )  is easily integrated and substituted into (6.2b), which 
contains both periodic and steady components. We seek the time average of (6 .2b)  
over one oscillation cycle, which yields the steady Lagrangian drift X:,. 

For the case of a < O(1) in $4, the x-direction component is plotted in figures 
(3a,  b ) ,  which correspond to  figures (1  a, b )  respectively. We observe in figure (3a )  that 
the low-frequency Lagrangian drift correlates qualitatively with the Eulerian result ; 
that is, there are two streams which flow toward the channel’s larger end near the 
midline and the smaller end near the wall. Their speeds increase with a. In figure ( 3 b )  
we again note the appearance of two crossover points and three streams, but their 
locations are different from figure (1 b) .  For the case of a 9 1 ($5) the corresponding 
Lagrangian drift is plotted in figure 4. There are some major differences between this 
result and those in figure 2.  We expect the two results to be similar for small particle 
displacements such as those nearest the wall, and indeed they are. However, the 
negative Lagrangian jet near the wall occupies a greater fraction of the drift layer. 
Farther away, the positive Lagrangian drift region is weak compared to the negative 
jet, unlike the Eulerian result. However, the curve asymptotes to a slow negative 
core drift as before. Clearly the Lagrangian profile does not integrate to zero over 
the cross-section, as required in the Eulerian profile. This seems to be a point of 
confusion in Haselton and Scherer’s work. Nevertheless, the results of this section 
compare favourably with their Y-tube experiments, which vary a: and the Reynolds 
number. I n  the present theory R, = Aa2, and the channel’s wider end corresponds 
to the direction of their daughter tubes. Although their tubes are not tapered, the 
transition region from parent tjo daughters represents an increase in total cross- 
sectional area. The axial velocity profiles in this region, a t  least in steady measure- 
ments by Schroter & Sudlow (1969) and Schreck & Mockros (1970), behave similarly 
to the channel model with blunted profiles during negative flow and cupped profiles 
with positive flow. The experiments show steady bidirectional drift for three ranges 
of a and R,. In  their low range (a = 0.68, R, = 2.6) the observed drift is consistent 
with typical curves in figure ( 3 a ) .  I n  their middle range (a = 4.8, R, = 44) this 
pattern appears to continue, but in their high range (a = 19, R, = 1400) the 
streaming in the core reverses to become negative in the parent tube and blunt with 
a second region near the wall which is also negative but faster (their figure 5 c ) .  This 
is similar to figure 4 for large a and R,. The strong swirl motions encountered in the 
experiment in this range are not included in our simple model, so further comparisons 
are difficult to make. However, the qualitative features of the model and the 
experiments agree as a varies from lower to higher values. 

XI, = uo, XZ, = u, + (X1.V) u,, 



260 

'-3.0 -1.5 0 1.5 3.0 

J .  B. Grotberg 

4.5(X104) 

0.98 

0.84 

0.70 

Y 

0.56 

0.42 

0.28 

0.14 

0.98 

0.84 

0.70 

Y 

0.56 

0.42 

0.28 

0.14 

0 

Y = 2  20\ I \5 

-2.8 -1.4 0 1.4 2.8 (X 104)  

FIGCRE 3. Lagrangian axial drift-velocity profile corresponding to figure 1 



Volume-cycled oscillatory $ow in a tapered channel 26 1 

0 

3.3 

6.6 

h 

9.9 

& 
U 

13.2 

16.5 

19.8 

23.1 

a= 200 x 

-1.4 -1.05 -0.70 -0.35 'X 10 -2) 

FIGURE 4. Lagrangian axial drift-velocity profile corresponding to figure 2. 

7. The pressure gradient 
In many theories of oscillating flow in tubes the pressure gradient is chosen to be 

periodic with constant amplitude. In  the present theory the pressure field must adjust 
itself to the imposed volume cycling. When the tube or channel is tapered we expect 
both steady and unsteady pressure components whose amplitudes will vary with the 
parametersol, 6 and A .  After substituting (3.9) into (3.2) and then into (2.3), the steady 
pressure gradient for the a = O(1) solution is found to be 

where the angle brackets indicate time average over one period. Because p: is 
independent of y ,  we simplify (7.1) by setting y = W(x), where lc.ox = Ij/o, = 0. 
Therefore we find that the steady pressure gradient has form 

and upon substituting (3.9) into (7.2) we arrive a t  the desired result. It is straight- 
forward but tedious to show that p: > 0 when W > 0. In the high-frequency case 
ol 9 1,  (5 .4b)  yields a similar but more obvious relationship to the wall slope: 

3 w  
P i  =1sw3+c.c. (7.3) 
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The steady component of pressure is larger a t  the wider end of the channel. This is 
consistent with the steady negative drift in the inviscid region a t  high frequency. 
Indeed (7.3) may be found directly from inviscid analysis using Euler’s equation. 
Equations (7.2) and (7.3) may be rearranged to show that the dimensional steady 
pressure gradient increases with frequency, which is consistent with the experiments 
discussed in 5 1 .  This is an important practical point in HFV, since one of its attractive 
medical features is the small amplitude of its unsteady pressure excursions. This is 
desirable to minimize the detrimental effects that  increased intrathoracic pressure can 
have on cardiac output, on the risk of lung rupture and on ventilation-perfusion 
matching. The experiments and theory seem to indicate that increases in steady, 
intrathoracic pressure with increasing a or h is an inherent characteristic of the airway 
geometry. I n  addition, the magnitude of the unsteady pressure gradient is propor- 
tional to w2.  Therefore the absolute pressure oscillations in the alveoli may be large. 
To avoid complications, such HFV devices could simply lower mean airway pressure 
as frequency increases. 

8. Conclusions 
We have examined oscillating viscous flow in a two-dimensional channel section 

with gradually increasing depth. The fluid motion is volume-cycled and the system 
is analysed in a general way, but with particular attention to modelling certain 
aspects of ventilation. Because the alternating velocity profiles and accelerations are 
different, fluid particles experience an induced steady axial drift and steady pressure 
gradient. The predicted Lagrangian axial drift-velocity profile is qualitatively similar 
to experiments on branched tubes as a: varies from small to large values. The latter 
theory reveals the emergence of a drift layer which is much thicker than the Stokes 
layer. The steady pressure gradient agrees qualitatively with measurements and gross 
observations of tube and animal experiments during HFV. The importance of these 
results in terms of enhancing gas exchange remains to be shown, theoretically. 
However, experiments on dispersion by Tarbell, Ultman & Durlofsky (1982) and by 
Kamm et al. (1983) indicate substantial improvement of transport during oscillatory 
flow in a network of branching tubes compared to a single straight tube, as in Joshi 
et al. (1983). It has been customary to reduce such experimental data in terms of an 
effective diffusivity Deff, which appears in theoretical analyses if dispersion in straight 
pipes under steady (Taylor 1953) or unsteady (Chatwin 1975) conditions. The 
parameter Deff arises from integrating the convection-diffusion equation over the 
tube cross-section and arriving a t  a simplified theory for area-averaged velocity and 
concentration variables. Theories of HFV by Fredberg (1980) and Slutsky et al. (1980) 
rely on this approach. I n  the present case of a tapered conduit, however, such 
integration in the Eulerian frame may eliminate the bi-directional streaming effects, 
a rather serious defect of the averaging meth0d.t 

I n  the tube experiments and in the present analysis the steady axial drift nearest 
the wall flows toward the parent tube or smaller channel end for all values of a. The 
corresponding wall shear, then, is directed ‘ mouthward ’. An important feature of 
airways is their mucus lining which is cont,inually cleared by ciliary mechanisms. It 
appears that  HPV may have the potential to facilitate mucus clearance based on the 
wall shear. This would be helpful in disease states where clearance is impaired. 

t For example, the concentration C of a diffusible substance may be expanded as 
C = C,+hC, +h2C,+O(h3). The leading term C, can be independent of y, so integration ofuC, and 
vC, across the channel would cancel the streaming effects. 
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The analysis presented here assumes laminar flow conditions for all frequencies. 
Since no experiments on this problem in tapered channels have appeared, i t  is difficult 
to know what value of R,  will be critical. There are a t  least two considerations, the 
stability of the oscillating flow and that of the steady drift. The steady profiles in 
figures 1 and 2 indicate one or two inflection points over a half-width. This would 
tend to promote instability in the steady component coupled with the fact that the 
positive drift is against an adverse pressure gradient. The oscillatory component, on 
the other hand, may be more stable since it is primarily a Stokes-layer phenomenon. 
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